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Abstract—Based on a mathematical model for Skinner’s func-
tional analysis of Verbal Behavior, we derive formal definitions for
the concepts semantic anchor, utterance-meaning pair, and micro-
local grammar. We show how these concepts can be used for
designing a bidirectional interface connecting automatic speech
recognition to meaning oriented language processing. A semi-
automatic process for constructing components for such an
interface from sparse data, e. g. collected from Wizard of Oz
experiments, is described. Finally, we use our formal approach
to investigate some questions concerning the formal complexity
of natural language.

I. INTRODUCTION

For designing human-machine interfaces, it is highly de-
sirable to include the possibility for using spoken language in
both directions. To this end, it is necessary that the machine
can both: understand human verbal utterances, and formulate
agreeable wordings for presenting information, or for asking
for specific inputs.

Concerning the first problem, it is also well-known that
machines are bad in concept regonition, even if endowed with a
speech recognizer with whose word error rate is low. A reason
is that in automatic speech recognition, ‘speech’ and ‘lan-
guage’ are often strictly separated. ‘Speech analysis’ ends with
a statistical language model, while ‘language analysis’ starts
with parsing word sequences. Meaning oriented language
modeling is a functional approach for creating bidirectional
interfaces between speech and meaning.

Basic to our work is a channel model described in the
next section, which can be extracted from Skinner’s book
[1]. The crucial point is Skinner’s observation that in stable
communication situations, the ‘meaning’ of a verbal utterance
is not part of the utterance itself, but is completely deter-
mined by the circumstances of the utterance. For constructing
a mathematical model, we employ semantic anchors which
provide a connection between Zermelo-Fraenkel set theory
with urelements, abbreviated ZFU, and the circumstances of
the utterance. This allows us to consider a meaning as a set in
ZFU which has some reference to reality in a communicative
process. So we arrive at the concept of utterance-meaning
pairs, abbreviated UMP, which are the atoms from which a
meaning oriented language model is built.

We show that UMP’s can be extracted from data collected
in appropriate Wizard of Oz experiments. Based on the UMP
concept, we use the notion micro-local grammar for modeling
components of a bidirectional interface between speech and
language. Moreover, a semi-automatic process for constructing
micro-local grammars from sparse data is described.
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Finally, our formal approach opens a way for attacking the
problem of formal complexity of natural language. We show
that it is possible to apply Godel’s theorem and Rice’ theorem
in our setting, which suggest the conjecture that the UMP’s of
a natural language are not recursively enumerable.

II. CHANNEL MODELS

Mathematical modeling for message transmission starts
with Shannon’s famous channel model [2], [3]:

Sender —— Channel — Receiver, @)

where a Markov process is employed as mathematical model
for transmission. The channel model has proved very useful
in modeling transmission of symbol strings, without reference
to meaning. Shifting attention to semantics, psychology comes
in, as formulation and understanding of messages depends on
ontologies and language skills. Similar to Shannon’s channel
model is Skinner’s [1] embedding of verbal behavior into an
ABC-scheme

Antecedents — Behavior —— Consequences, (2)

splitting a communication process into A-, B-, and C-part.

Our first modeling decision here is that we assume that the
Behavior is a verbal utterance of bounded length. Moreover,
we assume that the verbal utterance is taken from a natural
language. It is clear that any fixed natural language only con-
tains a finite number of phonemes, the duration of a phoneme
in an utterance is bounded below, and the phrase length is
bounded. It follows that, for any fixed natural language, the
set of possible utterances is necessarily finite.

As a second modeling decision, we do not consider learn-
ing procedures, where iterations are used to change behavior by
its consequences. Rather, we concentrate on stable situations,
where the behavior has the intention to stimulate or modify
consequences. Our aim is to design artificial speech dialogue
systems, where the information state of the system should
change according to a verbal utterance of an user. Therefore,
we take into account only those parts of the C-part which
are given by the abilities of the artificial system. We are
heading for constructing language models which give a relation
between formulations of a human user and updates of the
information state of the system.

In laboratory experiments, the ABC-scheme can be used
to measure behavior in fixed contexts. In [1], Skinner takes
the antecedents and possible consequences as independent
variables controlled by the experimentator, and he takes as



dependent variable the probabilities of different behaviors
belonging to fixed A- and C-parts. Choosing a probability
distribution as dependent variable appears quite different from
current empirical methods, where it would be more natural
to take just the B-part as dependent variable, and accept a
certain residual variance not explained by the variables under
control. For explaining the difference, let us have closer look
at Skinner’s arguments. Skinner explicitly leaves the question
open, whether the B-part is completely determined by the
independent variables—in an experimental situation, it is often
impossible to control all relevant variables. In fact, A- and C-
parts are arranged in such a way that a certain specified number
of independent variables are under control of the experimen-
tator. So, the normal situation is that different Behaviors cor-
respond to fixed values of the independent variables. Skinner
argues that, in principle, it might be possible that the behavior
could be determined if sufficient information on antecendents
and (intended) consequences were available—but, as this is
not the case in most situations, a probabilistic model appears
better suited in a functional-descriptive approach. Provided a
sufficiently large number of experiments, such probabilities can
be approximated by outcome frequencies. In fact, a probability
distribution would be quite a bit more information than mere
residual variance.

But where precisely is the ‘meaning’ of the behavior?
Skinner’s answer:

Technically, meanings are to be found among the
independent variables in a functional account, rather
than as properties of the dependent variable. When
someone says that he can see the meaning of a
response, he means that he can infer some of the
variables of which the response is usually a function.
[1, p. 14]

Combining this with the ABC-scheme and Shannon’s chan-
nel model leads to the following statement: Semantics is a
hypothetical intervening variable that links antecedents and
behavior on the sender’s side, and behavior and consequences
an the receiver’s side [3].

There is also a system-theoretic approach to semantics, see
Bischof [4, Kap. 10], who comes to an essentially equivalent
definition of semantics (without reference to Skinner).

III. MEANING AND LANGUAGE
A. An Example

Let us turn to an example. Suppose that we intend to design
a human-machine interface based on speech dialogue. For
getting best possible performance of the speech recognizer, our
aim is to describe the language models configuring the speech
recognizer as good as possible. Best performance could be
guaranteed if we were able to construct, for each dialogue state
separately, a language model containing exactly all possible
utterances of users in the given dialogue state, scored by their
probabilities of occurence.

For approximating this best possible situation, the ABC-
scheme (2) is helpful. As described in the previous section,
meaning is not part of a verbal behavior, but is to be found
in the antecendents A and consequences C. So, a meaning
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is obtained by fixing certain properties of A and C'—for
convenience, we call such a fixed property a (semantic) anchor.

In order to apply this to our speech dialogue example,
imagine that somebody, called the commander, gives a flower
vase to a servant, and commands the servant in just one
utterance v in German language, say, to put the vase at a
certain position. According to the preceding paragraph, the
meaning of the utterance is to be determined by anchors in the
antecedents and consequences. As a minmal set of anchors for
the meaning of utterance u, consider three anchors aq, as, as
in A, namely the setting giving a situational context (a1), the
assumption that both commander and servant have sufficient
knowledge of German language (a2), that the vase is given to
the servant (ag), and one anchor ¢ in C, namely the position
where the vase is put to by the servant. The utterance © may
contain much more information, e.g., that the servant should
carry the vase carefully, or that she or he should avoid some
precious carpet when moving.

In this setting, let us consider the set
Uy :=U{a1,az2,as,c})

of all utterances whose context fits into an ABC-scheme
admitting the given four anchors a1, ao, as, c. If, in addition,
we endow each utterance u € U with its relative frequency
of occurence f1(u) € [0, 1], the result is a stochastic language
model

Ly = U, fr).

Each utterance u € U fits, as possible verbal behavior,
into an ABC-scheme with anchors a1, a2, as,c, and fi(u) is
the conditional probability that, given anchors ai,as,as,c,
utterance u occurs. Of course, this language model would
also include utterances containing much more information. In
terms of dialogue modeling, U7 would be a language admitting
overanswering.

But this situation is not very satisfactory, as {{; does not
contain an utterance for commanding the servant carry the vase
to another position. For modeling this, split the anchor ¢ into
two parts ¢y and c;, where ¢y means ‘put the vase’ and c;
refers to the position where to put the vase. Now let ¢, c3, . . .
refer to other possible positions, and define utterance sets

ui = Z/[({a’laa’QaG‘BaCOa C’i})

containing all utterances for commanding the servant to put
the vase on position ¢;. The union of the U/; is a language

U w

i=1,2,3,...

Uo = u({a17a27a3760}) =

which contains all take-move-put commands understood by the
servant. If we knew relative frequencies f;(u) for utterances
u € U;, and also probabilities p; of occurence of anchor c;,
we could endow the language U with a probability function

fo(u) == Z pi fi(u),

ueU;

fg :Z/[() — [O, 1],

rendering Lo := (Up, fo) a stochastic language model.



B. Semantic Anchors, Formally Defined

For working with semantic anchors, it is necessary to define
them as mathematical objects—but a semantic anchor must
connect natural language to reality. As we argued in section 1II,
any natural language is finite—but it appears misleading to
consider reality as finite: for instance, in usual mathemati-
cal models, locations and time-points are described by real
numbers with arbitrary precision. A third aspect which we
incorporate into our formalization is that reality is subjective,
i.e., what is considered as real may depend on personal views.

In order to solve these problems, we invoke mathematics as
interlingua to bridge the gap between finite natural language
and potentially infinite reality. The basis of mathematics is ax-
iomatic set theory. For definiteness, we use Zermelo-Fraenkel’s
axiomatization including urelements, abbreviated ZFU. In our
model, an urelement is an arbitrary reference to a property
of reality for at least one of the involved persons. Given the
channel model (1), this means that either sender, or receiver,
or both, are able to link the urelement to reality. For example,
nouns like ‘plant’ or ‘table’, verbs like ‘take’ or ‘think’, and
adjectives like ‘nice’ or ‘terrible’ refer to aspects of reality,
including inner reality of a person. We take such referencing
expressions as urelements—nole that, at the moment, we need
not assume that the reference is unique or common to different
persons.

It is known from mathematics that the language of set
theory is very strong. It allows to define any mathematical ob-
ject, and to express any mathematical assertion. Having added
sufficiently many urelements as basic references to reality, it
is quite safe to assume that this language is strong enough to
express any possible meaning of any verbal behavior.

Let us call an urelement or a set in ZFU a ZFU object.
By definition, a semantic anchor is a ZFU object with the
additional property that at least one of the involved persons
considers it as a description of an aspect or property of reality.
We say that a given ZFU object e is realized in an ABC-
scheme (2) according to a person P, if person P considers
e as a description of aspects or properties of antecedents or
consequences in the ABC-scheme. We use the formula Rp(e)
to formally denote the assertion that person P considers e to
be realized in the ABC-scheme. Whence assertion Rp(e) is
true whenever P considers e as a semantic anchor, and Rp(e)
is false if in P’s view of the world, e is not a semantic anchor.

If a ZFU object contains more than one reference to reality,
it is realized in an ABC-scheme iff a person P is able to relate
all references to reality simultaneously. That is, combining
several references to reality into a single semantic anchor
means combining them with logical ‘and’. For instance, in the
commander-servant context described above, if a ZFU object
s1 references ‘the color of the vase is blue’, s references ‘the
vase is in the cupboard’,

Rp({s1,s2}) = Rp(s1) AN Rp(s2)

formalizes the assertion that ‘the blue vase is in the cupboard’.
In this case, person P is either the command or the servant.
Clearly, effective communication is only possible if the two
views coincide, at least concerning the ZFU objects si, so,
and {s1, $2}.
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The important point of this definition is that ZFU provides
a grammar to express any possible semantic anchor, but it is
not true that each particular syntactically correct description of
a set in ZFU represents a semantic anchor. Examples for ZFU
objects which are not semantic anchors are provided by con-
flicting references to reality. For instance, in the commander-
servant context described above, a reference like ‘the vase is
on the cupboard at time £y’ and a reference like ‘the vase is on
the table at time ?(’ are conflicting. If these two references are
encoded into semantic anchors a1 and ag, respectively, then the
ZFU object {ay, as} is syntactically correct, but not a semantic
anchor. Formally, for a given person P, two semantic anchors
aq and aq are called conflicting w.r.t. P, iff the assertion

Rp(al) AN Rp(ag)
is a contradiction.

For applying meaning oriented language modeling to a
technical system, we suggest to take the system as ‘artificial
person’, whose world view is given by the data available to
the system. There are two techniques especially useful for
constructing ZFU objects which can be considered as semantic
anchors: the use of feature-values relations, and the use of
logical formulae.

1) Feature-Values Relations: According to Definition 1 in
[51, a feature-values relation, abbreviated FVR, is a triple

(V,—,0)

consisting of a finite set V' of vertices, a relation — on V'
making (V,—) an acyclic directed graph, and a labeling ¢ :
V — L, where L is some given set of possible labels. Taking
the set of labels from the urelements, it is clear that any FVR
can be considered as ZFU object.

In order to get a reference to reality having in mind a
speech dialogue system, observe that it is often reasonable to
assume that the data available to the system are organized
according to an entity-relationship diagram. An algorithm
deriving FVR’s for referencing sets of entities from the ER-
diagram is described in [6].

2) Logical Formulae: Another type of ZFU object which
can be part of a semantic anchor are logical formulae. Adopt-
ing a calculus for logic, we can consider a logical formula
as string of symbols. From this view point, it is possible to
take into account arbitrary calculi for logic, including calculi
modeling modal or deontic logic.

In order to connect a logical formula to reality, we have
to enhance the formula by some construction meaning ‘this
formula is true in the system’s world view’, or ‘this formula
can be inferred from the dialogue up to now’, or other formu-
lations in this vein. Such expressions can easily be modeled
by urelements.

C. Utterance-Meaning Pairs

By definition, an utterance-meaning pair, abbreviated
UMP, consists of an utterance, described as finite sequence
of words, and a meaning, described as a set of non-conflicting
semantic anchors. The notion UMP already has been defined
in [7], where only FVR’s were admitted as meaning; here we
adopt the more general definition using semantic anchors.



Given a meaning M, the set of utterances which can be
embedded in an ABC-scheme (2) with meaning M is denoted
by U(M).

Here is a collection of remarks about UMP’s:

e The empty set () is also a meaning, the set U()
contains all possible verbal utterances in any natural
language.

e For a fixed natural language, e. g. ‘German’, we can
take the name of the language as urelement. Then the
set U ({German}) denotes the finite set of all possible
German utterances.

° If My C M>, then Z/[(Ml) o U(MQ)

e A possible meaning M may contain infinitely many
semantic anchors, but the set U/(M), being a part of
natural language, is necessarily finite.

e Given an utterance u, there may be infinitely many
possible meanings M; with u € U(M;). An example
is the utterance ‘ok’, whose meaning depends on
the context, and belongs to infinitely many different
meanings.

D. A Hierarchy Of Grammars

According to our modeling assumptions given in II, we
know that any natural language is finite. Hence, for any given
meaning M containing a reference to a (ixed natural language,
the set of utterances U(M) is also finite, which implies that
each U(M) can be described by a regular grammar.

For designing speech dialogue systems, it appears natural to
consider two-level semantics as described in [3], where the first
level has been called scheme, and the second level has been
called specification. This structure can be incorporated into our
approach based on semantic anchors as follows. We reserve
a sequence x1,Zxs2,... of urelements with no reference to
reality as placeholders. A set of ZFU objects containing some
placeholders, 1, ..., x,, say, is called a semantic scheme; let
S := S(z1,...,2,) be such a scheme. If we replace each
placcholder z; by a semantic anchor a;, we obtain a ZFU
object S(ai,...,ay,), called a specification of the scheme
S. Note that, at the moment, we do not postulate that the
specification is a meaning—it may happen that there is no
person who connects the specification to reality, or, in other
words, there may be no person P such that Rp(S(aq,...,a,))
is true.

For example, consider a semantic anchor given by an
FVR (V,—, ). If we replace some of the labels (which are
urelements) by placeholders, we get semantic scheme.

The next step is to define the set of utterances belonging
to a given semantic scheme S = S(z1,...,z,). To this end,
denote by A(S) the set of all n-tuples (a, ..., a,) of semantic
anchors rendering S(aq,...,a,) a meaning. Then the set of
utterances belonging to the semantic scheme S is defined as
the union

U(S) = U

(a1,...,an)EA(S)
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In computational linguistics, a grammar describing phrases
belonging to meanings from some specific domain is often
called a local grammar. This leads to a chain of concepts

domain — semantic scheme — meaning. “4)

The UMP concept allows us to convert this chain into a
hierarchy of grammars. Explicitly, fix a natural language by
a semantic anchor L, and assume that a domain in language
L is given by a set D of semantic anchors, with L € D.
Then U(D) is the set of utterances belonging to domain D.
It is a finite set, whence it can be described by a grammar
T'(D), the local grammar of language L pertaining to domain
D. Now fix a meaning M inside the domain D, which means
M O D. We call a grammar I'(M) describing the utterance
setU(M) C U(D) an elementary grammar, or single-meaning
grammar. Replacing some of the semantic anchors in M \ D
by placeholders x1,...,x,, we arrive at a semantic scheme
S = S(z1,...,2,) 2 D with the property that M is a
specification of S. In view of (3), this gives a chain of sets in
ZFU

U(D)

D> UWS) 2 UM).

In this situation, we call a grammar describing the utterance
set U(S) defined in (3) a micro-local grammar. Then the result
is a hierarchy of grammar adjectives reflecting the chain (4):

local — micro-local — elementary  (grammar). 5)

Formally, as we specified a domain by a set of semantic
anchors, a local grammar is a special case of an elementary
grammar. In the next subsection we will see that, from a
practical point of view, it is an advantage to have the interme-
diate concept micro-local grammar based on placeholders for
semantic anchors.

E. Skinner’s ABC-Scheme Revisited

Now let us return to Skinner’s ABC-scheme (2). In sec-
tion II we argued that Skinner’s dependent variable is a
probability distribution on the set of possible utterances fitting
into ABC-schemes where certain variables in the A- and C-
parts are fixed. Using our UMP concept, we can give more
precision to this statement. If M is a meaning, i. e., a set
of semantic anchors, the utterances set U(M) describes the
possible B-parts of ABC-scheme realizing M. In this setting,
Skinner’s dependent variable is a probability function

FUB) > [0,1]. ©®)

In other words, given a meaning M, Skinner’s dependent vari-
able is a stochastic language model for the possible utterances
belonging to meaning M,

L(M) := U(M), f). ™

As mentioned in section II, with sufficient experimental data
fitting into ABC-schemes realizing M, we could derive an
approximation to £(M).

In principle, Wizard of Oz experiments can be designed
in such a way that certain sets of semantic anchors pertaining
to certain specified semantic schemes can be realized. See [8]
for a Wizard of Oz experiment imitating a home entertainment
system, which is designed using the UMP concept. A problem
is the small amount of data collected by such a Wizard of Oz



experiment. Given a meaning M, we get only view utterances
belonging to M, if any—indeed, most meanings which are
possible by the system are not represented in an utterance.
Technically, this sparse data problem means that in most cases
there not sufficient data for a direct construction of a language
model L£(M) as defined in (7).

In view of the sparse data problem, our first decision is to
take the probability function as two-valued. Consequently, f
is a scalar multiple af a characteristic function. In this model,
there is subset H C U(M) such that the utterance in U \ H
are neglected, and all utterances in H get the same probability.
Our second decision is motivated by the fact that many possible
meanings may never occur in our experiments. Therefore, we
concentrate on semantic schemes with placeholders rather than
specific meanings.

FE. Construction Of Meaning Oriented Language Models

Our aim is to construct, given a semantic scheme S, an
approximation to the utterance set U(S) defined in (3) from
sparse data, which is as good as possible from the data.

Given an UMP (u, M), and a semantic scheme S with
placeholders z1,...,x, such that M is a specification of S.
Then there are semantic anchors aq,...,a, such that M =
S(ay,...,ay). The idea is to employ linguistic knowledge
for locating words corresponding to the semantic anchors in
the utterance u. The next step is to replace these words by
others referring to other semantic anchors, expanding u to a set
B(u, S) of utterances, where the letter B refers to the B-part
of an ABC-scheme. We infer from (3) that B(u,S) C U(S).

For illustrating this procedure let us modify and extend
our example started in subsection III-A. It is clear that the
semantic anchors a1, as, ag, ¢ described there can, in principle,
be formalized as ZFU objects. The modification is that the
servant is not given the object, but has to take the object from
where it is, and our plan is to construct a language model which
enables the servant to conclude from the utterance which object
he should take for moving. So we modify semantic anchor ag
to mean ‘take the flower vase’, and we add a further sematic
anchor a4 meaning ‘take the ashtray’.

In this example, given the semantic scheme
S ={ay,as,x,c}
and the utterance
u = “Stell’ die Blumenvase auf die Kommode!”

the following process will lead to a set B(u, S):

1)  Identify in u the parts relating v to semantic anchors
which replace placeholders in S: here = corresponds
to “die Blumenvase”.

2)  Use the database to identify all tuples which lead to
specification of S which are meanings: here x can be
specified to “Blumenvase” or “Aschenbecher”.

3)  Create utterances like u which belong to the meanings
identified in the second step: in this example, we get

B(uv S) = {(u7 {ah az, as, C})» (’ft, {alv ag, a4, C})}
with the utterance

u = “Stell’ den Aschenbecher auf die Kommode!”
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Note that for performing the first and the third step of this
procedure, linguistic knowledge is essential: In order to come
to appropriate wordings, it is necessary to insert the German
articles in their correct genders and cases.

Let uq,...,u, be the utterances collected in a Wizard
of Oz experiment, and let Sy,...,S,, denote the different
semantic schemes available in the world view of the system.
Then there is a many-to-many relation

R C{uy,...,un}t X {S1,...,Sm}
defined by
(u;, Sk) € Rp <=  u; belongs to Sk.

Using the u; as described above, we are now able to construct

sets
BSy = |

(u;,Sk)ERRB

Note that, in order to construct these sets, we need at least one
utterance for each semantic scheme Sy.

G. Using Meaning Oriented Language Models

In a speech dialogue system, meaning oriented language
modeling can be used for configuring the speech recognizer at
each dialogue state separately. Such a system would contain a
number of semantic schemes S, ..., .S,, modeling the various
contexts which might occur during a human-machine dialogue.
In addition, for each Sg, the system would contained a precom-
piled micro-local grammar describing B(Sy). At each dialogue
state, the system would choose all semantic schemes which fit
into the given context. Then the chosen semantic schemes are
activated by loading their corresponding precompiled micro-
local grammars into the speech recognizer.

Note that we do not assume that the sets B(Sy) are pairwise
disjoint. If an utterance happens to belong to two different
activated semantic schemes, in many cases the ambiguity
will be either not so important or solved when the dialogue
procedes.

H. A Remark About Bidirectionality

For application in human-machine communication, it is
desirable to have a speech-meaning interface which is bidi-
rectional. The machine should be able to provide data, or to
pose a question, using agreeable verbal utterances.

Given a semantic scheme S, the construction described in
subsection III-F produces a map defined on ¢/(.S), which maps
each utterance meaning pair (u, M) belonging to S to a subset
B(u,S) CU(S). Moreover, the map

(w,.M) +— (B(u,S),M)
is one-to-one. This enables the machine to select an appropriate
utterance ' as follows. Given a set B(u,S) and a meaning

M’ pertaining to S, there is a uniquely determined utterance
u’ such that (v, M") € B(u, S).



IV. ON THE FORMAL COMPLEXITY OF NATURAL
LANGUAGE

The formal construction of semantics given in this article
is a starting point for attacking the problem of formal com-
plexity of natural language. In section II we argued that, if a
natural language is considered as set of verbal utterances, it is
necessarily finite. Essentially, this is due to the boundedness
of phrase length.

But if we consider a natural language as consisting of
utterance-meaning pairs, the situation changes dramatically.
Contrary to phrase length, there is no obvious bound for
the number of semantic anchors. Indeed, it is conceivable
that an utterance belongs to a meaning containing infinitely
many semantic anchors. Hence, in general, the boundedness
argument is not applicable. In this context, the problem of
formal complexity arises.

According to our definition given in subsection III-B, a
semantic anchor is a ZFU object which some person considers
as description of an aspect or property of reality. Given the
language and rules of set theory, and provided the urelements
are enumerable, it is clear that the class of ZFU objects is
recursively enumerable. But not all ZFU objects are semantic
anchors. Our conjecture is the following.

CONIJECTURE. Given a person P who considers the arithmetic
of natural numbers as an aspect of reality, and who satisfies
certain mild consisteny requirements, then the class of seman-
tic anchors of this person is not recursively enumerable.

Unfortunately, we do not have a formal proof of this
conjecture. But we have some results in this direction.

A. Application of Godel’s Theorem
Assume that a person P admits an urelement
T = “mathematically true”

such that an arithmetic assertion a is true, if and only if P
considers (7', a) as semantic anchor. In this situation, Godel’s
famous Incompleteness Theorem implies that the subset of
semantic anchors consisting of ZFU objects of the type (T, a),
where a is a valid arithmetic assertion, is not recursively
enumerable.

Let us additionally assume that PP accepts the urelement
T only as part of a semantic anchor if appears in the form
(T, a) where a is arithmetic assertion. Then we conclude that
the subclass of semantic anchors of PP which contains the
urelement 7' is not recursively enumerable. This does not
necessarily imply that the class of all semantic anchors for
P is not recursively enumerable.

B. Application of Rice’ Theorem

Recall from subsection III-C that a meaning is a set of
semantic anchors which is itself a semantic anchor. We now
assume that a person I’ admits a countable set of basic
semantic anchors B = {by,bs,b3,...} containing at least
one conflicting pair (b, by), with ¢ < k, say. Denote by M
the set of possible meanings based on B, i. e., the sct of
subsets M C B such that (M) # (). As semantic anchors
without utterance could be omitted, it is safe to assume that all
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singletons {b;} are possible meanings. Identifying B with the
set A of natural numbers, we infer that M can be identified
with a class of subsets of N.

In [9], Rice considers arbitrary classes A of subsets of
N. For such classes he introduces the notion completely re-
cursively enumerable, abbreviated c.r.e. Here we dispense with
the comparatively complicate formal definition of c.r.e. classes.
Intuitively, a class A is c.r.e., iff the set of all partially recursive
functions which enumerate a set in A is recursively eumerable.
The crux is that, in general, there are infinitely many different
functions enumerating recursively a given set. Rice proves that
only classes of special type are c.r.e., and ‘most’ classes are
not. He uses these results to infer computability results of
certain subsets of A.

We are able to apply Rice’ main theorem for proving
that the class M is not c.r.e. There is no direct use of this
result, but, as indicated above, there is a subtle connection
between c.r.e. classes and recursively enumerable subsets of
N. Therefore, the result might be a starting point for further
inverstigations. Rice stated his main theorem as follows [9,
p. 3631

THEOREM 6. Let A be a class which contains a finite
set {ag,...,ar}, but omits a set a which includes
{ao,...,ar}. Then A is not c.re..

Indeed, it follows from the assumption that all singletons
are possible meanings that M contains the set {b;}. As the
semantic anchors b; and by are conflicting, it follows that M
omits the set {b;, b }. Consequently, the class M of possible
meanings is not c.r.e.
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